
High-Res Astrocade Machine Language Subroutines
By MCM Design / Michael Matte
February, March 2020 and January 2021

Description

The following high-resolution subroutines for the B ally Arcade/Astrocade were
created by MCM Design and sent to Adam Trionfo as p hotocopies and text
documents via email in February and March 2020. Ad am compiled this collection
of subroutines from ten documents in January 2021. It contains Z80 machine
language subroutines for use with a modified-for-hi -res Bally Arcade/Astrocade
home videogame console.

Table of Contents

1) Low and High-Res Comparisons

An Overview for Vector (Motion), Coordinate Limits and Graphic Pattern Data
Blocks. Briefly describes the purpose of each Hi-R es ML subroutine.

2) Convert High-Res Coordinates to a Magic Address

Similar to the On-Board Low-Res Subroutine #56. Co pied from MCM Design's Hi-
Res Multipage Test Demo, in the hand written code l isting, pages 55 and 69.

3) Standard Hi-Res Stacked Graphic Pattern Write Su broutines

Similar to the On-Board Low-Res Subroutines #30 - # 38. Copied from MCM
Design's Hi-Res Multipage Test Demo, in the hand wr itten code listing, pages
64-67.

4) Custom High-Res Move (Vector) Subroutine

Similar to the On-Board Low-Res Subroutine #62. Co pied from MCM Design's Hi-
Res Multipage Test Demo, in the hand written code l isting pages 84-89.

5) Custom Hi-Res Multi-Pager Graphic Pattern Write Subroutine

Utilizing MCM Design's Hi-Res Static Screen RAM Mul ti-pager. Similar to the
On-Board Low-Res Subroutines #30 - #38. Copied fro m MCM Design's Hi-Res
Multipage Test Demo, in the hand written code listi ng, pages 96-98.

Michael Matte's compiled comments about this projec t:

You are getting my photocopied, handwritten pages o f documentation. My library
photocopier was set for dark prints. Some of these pages show erasure smudges.
Looks like I found another good reason to make the time to learn how to program
using the Zmac cross-assembler for easier editing.

Each subroutine is extensively commented on, includ ing a note "This subroutine
is similar to low-res sub #__" plus you might see a Nutting Manual reference
page from where the hi-res sub was created. These ML sub docs are strictly for

someone who has access to a modified hi-res Astroca de, is experienced in ML/AL
programming and is looking for a custom hi-speed su broutine application.

The doc's intent is to help a hi-res programmer get started with custom
programming hi-res graphic patterns and moving patt erns around the screen
without the need to create this particular hi-res a pplication from scratch.

These ML subroutines, except the custom subroutine example for MCM Design's hi-
res multi-pager, function similar to their low-res equivalent. However, these
hi-res subs must be called directly. There is no p rocessing UPI (User
Programmer Interface). Note, MCM Design's upcoming Hi-Res ROM will include
sub's similar to these subs and will utilize a UPI. The ROM UPI and sub's will
be well documented.

Perhaps someday in the future, someone with ML/AL e xperience may acquire or
build a modified hi-res Astrocade and might find th is info useful. Keep in
mind that I will eventually submit to you my hi-res MLM and hi-res ROM
projects.

Michael's Posting Wishes for these Subroutines

Post the scans and docs right below the posting on Ballyalley.com of my
modified hi-res Astrocade with the static screen RA M, since that's what this
user info was created for. Group together all of t his info as "High-Res
Astrocade Machine Language Subroutines" by MCM Desi gn. Then, break down this
grouping into 5 sections listing each of the 5 resp ective doc/scans. Maybe add
a link to these postings in the Bally Alley ML sect ion.

LOW AND HIGH-RES DATA BLOCK COMPARISONS
(Related To Graphic Patterns)
By MCM Design
Margins Left 0.9, Right 1.0

This posting only compares the necessary low and hi -res data blocks related to
the writing and moving (vectoring) of graphic patte rns on a TV/monitor screen.
Refer to the attached diagrams detailing the data b locks and also their respective
coordinate systems.

A low-res comparison of a hi-res vector block along with its limits table reveal
some slight differences. In low-res, the X coordina te can normally vary from 0
to 159. This coordinate can be defined with just 1 byte (0–255). In hi-res, the
X coordinate can normally vary from 0–319. So, the hi-res X coordinate must be
defined using 2 bytes. Because of this difference, the hi-res vector block and
hi-res limits table are longer compared to that of low-res.

The X and Y coordinates, plus the X and Y deltas wi thin a vector block are all
expanded with double digit precision using high and low designations. If you place
an imaginary decimal point between the high and low designations, then it is easier
to understand how these parameters are utilized. Fo r example, the X coordinate
can be viewed as:

X coordinate = XH.XL where,
XH is the actual X coordinate (to the left of the d ecimal point) that is plotted
on the X axis of the coordinate system when writing graphic patterns.
XL is a double digit decimal breaking down the X co ordinate further, down to 1/100
of a X coordinate unit.

In hi-res, the XH coordinate is defined using 2 byt es, so XH.XL requires 3 bytes.
Similarly, in hi-res, deltaXH.deltaXL requires 3 by tes.

For low-res graphic applications, refer to other po stings on the Bally Alley
website such as:
The Nutting Manual
"An In-Depth Look At ..." tutorial series by MCM De sign

The Better Bally Book website also provides info.

The Bally Alley also posts hi-res application docs. MCM Design will continue its
effort to provide hi-res docs for users that have a ccess to or desire to build
a modified hi-res Astrocade.

End Of Posting
MCM Design
March 2020

This page intentionally left blank

CONVERT HIGH-RES COORDINATES TO A MAGIC ADDRESS
For Use On A Modified Hi-Res Astrocade
Similar To The On-Board Low-Res Subroutine #56
(copied from MCM Design's hi-res Multipage Test Dem o, in the hand written code
listing, pages 55 and 69)
Margins Left 0.9, Right 1.0

This posting is for a ML/AL programmer who has acce ss to a modified hi-res
Astrocade. Rather than create an applicable subrout ine from scratch, this tested
hi-res subroutine from MCM Design can be used as a reference doc.

Refer to the attached scanned hand written hi-res s ubroutine listing labeled as
RELTA1.

This subroutine (or a variation of it) has been use d in several hi-res demos created
by MCM Design. It is usable for hi-res graphic patt ern (or character) writes
utilizing the various magic functions. For details and program examples for writing
graphic patterns using magic functions, refer to MC M Design's "An In–Depth Look
At ..." tutorial series posted on the Bally Alley.

https://ballyalley.com/ml/ml_docs/ml_docs.html

This tutorial series focuses on the low-res mode, b ut there is info related to
writing patterns using magic functions that can be used as a guide for the hi-res
mode. The only difference in hi-res, is that the sc reen RAM utilizes more pixels,
more bytes.

This subroutine is called directly. There is no use r programmer interface (UPI)
required to process the calling of this subroutine. The Z80 CPU register entry
requirements are specified at the beginning of the subroutine listing.

The subroutine is labeled as RELTA1 (Relative To Ab solute) and is similar to the
low-res sub#56. The low-res version of RELTA1 is li sted in the Nutting Manual Z80
Cross Assembler listing, page 70. MCM Design used t he low-res version and revised
it for a hi-res application.

RELTA1 converts a graphic pattern's screen X,Y coor dinates to their corresponding
magic address. The X,Y coordinates of a pattern nor mally written to the screen
display, point to the upper left pixel of the patte rn frame. The coordinates of
a flopped pattern point to the upper right pixel of the flopped pattern frame.
The converted (calculated) magic address is passed on in the Z80 DE register at
the exit of this subroutine for use with the actual graphic pattern magic write
subroutine, which should follow RELTA1.

The ROM address of the graphic pattern to be writte n is specified in the Z80 register
HL at entry of RELTA1. This pattern address in HL i s saved and is also passed on
in the Z80 HL register at the exit of RELTA1 for us e with the following graphic
pattern magic write subroutine.

RELTA1 examines bits 1 and 0 within the X coordinat e to determine the necessary
magic shift of 0,1,2 or 3 pixels. The magic registe r value at entry can specify
any of the other legal magic functions, however, a graphic pattern magic write
subroutine following RELTA1 must support the specif ied magic functions. The magic
register value, with its adjusted shift amount in b its 1 and 0, is output to the
Magic Register (port 0CH) at the end of RELTA1.

RELTA1 also supports mirror image flopped screen co ordinates. RELTA1 calculates
the mirror image flopped X coordinate as

XFLOP = 319 - X
where, X = the normal (unflopped) X coordinate.

The game Gunfight used this flopped request for the cowboy on the right. The intent
of this flopped option has limited application. But , you can flop a pattern anywhere
on the screen once you understand how the magic flo p is written. See the separate
Bally Alley posting by MCM Design detailing the hi- res normal and flopped
coordinate systems. The posting is entitled:

Low And High-Res Data Block Comparisons

RELTA1 also has a 5 NOP future provision for a more usable flopped request. MCM
Design has a plan to develop and test this new flop ped request idea.

The hi-res X coordinate (0-319 range) must be repre sented in binary using 2 bytes.
This coordinate must be in the Z80 register DE at e ntry of RELTA1. MCM Design chose
to use the hi-res screen scratchpad address 7FF7H t o specify the Y coordinate for
this subroutine. This Y coordinate is labeled as RE GY. The Y coordinate (REGY)
must be in (7FF7H) at entry of RELTA1.

End Of Posting
MCM Design
March 2020

This page intentionally left blank

This page intentionally left blank

STANDARD HI-RES STACKED GRAPHIC PATTERN WRITE SUBROUTINES
For Use On A Modified Hi-Res Astrocade
Similar To The On-Board Low-Res Subroutines #30 thr u #38
(copied from MCM Design's hi-res Multipage Test Dem o, in the hand written code
listing, pages 64-67)
Margins Left 0.9, Right 1.0

This posting is for a ML/AL programmer who has acce ss to a modified hi-res Astrocade.
Rather than create an applicable subroutine from sc ratch, this tested hi-res
subroutine from MCM Design can be used as a referen ce doc.

Refer to the attached scanned hand written hi-res s ubroutines listing labeled as
VWRITR, WRITR, WRITP, WRIT and WPATHR.

These stacked subroutines are usable for the magic writing of hi-res
graphic patterns.

This multi-entry stacked subroutine is called direc tly. There is no user programmer
interface (UPI) required to process the calling of any of these 5 subroutines. Each
of the 5 entry points has a specific purpose. The 5 entries are labeled below.

VWRITR
WRITR
WRITP
WRIT
WPATHR

The Z80 CPU register entry requirements are specifi ed at the beginning of each of
the 5 entries. This hi-res version was created from the low-res version listed in
the Nutting Manual Z80 Cross Assembler listing, pag es 49–51.

So, documentation related to the low-res sub#30 thr u #38 can be used as a guide for
this hi-res version. Refer also to the Nutting Manu al system description and MCM
Design's "An In-Depth Look At..." tutorial series, both posted on the Bally Alley,
for info related to the magic RAM and magic write f unctions.

General Description Of 5 Entry Points

Entry 1
VWRITR
Write Relative From Vector Block

This entry uses the X,Y coordinates and the Magic R egister value from a vector block
in screen RAM to write a hi-res graphic pattern.

Refer to the Bally Alley posting: LOW AND HIGH-RES DATA BLOCK COMPARISONS.
This posting diagrams the required hi-res vector bl ock and coordinate system.

+++ ++++++++++++++++++++++++++++

Entry 2
WRITR
Write Relative

A relative X and Y is added to the entry X,Y coordi nates of a graphic pattern frame
for the writing of animated patterns such as a movi ng arm (Gunfight). Set relative

X and Y = 0 if you are just writing a regular patte rn (not an animated pattern).

+++ ++++++++++++++++++++++++++++

Entry 3
WRITP
Write With Pattern Size

The pattern's X size and Y size are loaded into the Z80 CPU register BC.

+++ ++++++++++++++++++++++++++++

Entry 4
WRIT
Write With X,Y Coordinates Conversion

The Z80 CPU registers DE and A entry requirements a re the same as the above WRITP.
The Z80 register HL must now point at the actual gr aphic pattern and register BC
= YSIZE XSIZE. Note that the Y coordinate must be i n the screen RAM scratchpad address
7FF7H. WRIT calls subroutine RELTA1 to convert the X,Y coordinates to their
corresponding magic address. For details on the sub routine RELTA1, refer to the Bally
Alley posting:

CONVERT HIGH-RES COORDINATES TO A MAGIC ADDRESS

+++ ++++++++++++++++++++++++++++

Entry 5
WPATHR
Write Pattern In Hi-Res

This is where the normal, expand and flop pattern w rites are located. There is no
write routine here to support the magic rotate func tion. The Magic Register value
(MR) in the Z80 CPU register A now flags which magi c write routine is to be executed.

End Of Posting
MCM Design
March 2020

This page intentionally left blank

This page intentionally left blank

CUSTOM HIGH-RES MOVE(VECTOR)SUBROUTINE
For Use On A Modified Hi-Res Astrocade
Similar To The On-Board Low-Res Subroutine #62
(copied from MCM Design's hi-res Multipage Test Dem o, in the hand written code
listing pages 84-89)
Margins Left 0.9, Right 1.0

This posting is for a ML/AL programmer who has acce ss to a modified hi-res Astrocade.
Rather than create an applicable subroutine from sc ratch, this tested hi-res
subroutine from MCM Design can be used as a referen ce doc.

Refer to the attached scanned hand written hi-res s ubroutine listing labeled as
MVECT.

MVECT can be used to move a hi-res graphic pattern around the screen in the X and
Y directions.

The intent of this particular custom hi-res subrout ine is to move and bounce a
critter around the entire screen.

A hi-res vector block is nearly identical to the lo w-res vector block. Since the
hi-res X coordinate can vary from 0–319, it must be defined using 2 bytes. So, the
XH and DeltaXH components must each be 2 bytes long in the vector block.

The vector block X,Y coordinates and Delta X compon ents are expanded with double
digit precision in the low component allowing fine tuning of a vectoring subroutine
that is normally executed many times per second. Ve ctoring (motion) updates are
accomplished by adding the delta high/low component s to the corresponding high/low
coordinate components.

The vectoring subroutine also utilizes a "time base " within the vector block, which
can be varied for motion speed. This speed incremen t works like a loop counter. The
delta X (or Y) is added to its respective X (or Y) coordinate "time base" times.
For example, if the time base = 02, then the delta is added twice.

A change in motion direction is referred to as a re verse delta. A reverse delta
actually performs a twos complement on the delta co mponents. The negated deltaX (or
Y) components are added to the X (or Y) components.

Since this custom vector subroutine bounces the cri tter around the entire screen,
there is no need to check either of the 2 checks ma sk bytes in the vector block for
a limit check request or a reverse delta request.

MVECT updates the X coordinate first followed by th e Y coordinate update. Lower and
upper limits for each coordinate are checked automa tically. A reverse delta
(direction) is automatically performed when any coo rdinate limit is reached.

This subroutine is called directly. There is no use r programmable interface (UPI)
required to process the calling of this subroutine.

The Z80 CPU register entry requirements are specifi ed at the beginning of the
subroutine listing.

This hi-res version was created from the low-res ve rsion listed in the Nutting
Manual's Z80 Cross Assembler listing, pages 43–46.

Since MVECT is similar to the low-res sub#62, docum entation related to sub#62 can
be used as a guide to examine how this hi-res versi on works.

Additional Notes (Deviations From Sub#62)

1. The vector status active bit 7 is NOT checked si nce this vector is always active
in the multi-pager Critter Move demo.

2. The vector time base is NOT checked to see if it is zero. This subroutine does
not zero the time base.

3. In Note 4 on page 84 of this MVECT subroutine li sting, bits 0 and 1 in the vector
checks mask are NOT checked by this custom subrouti ne. Limit checks and reverse
deltas are automatically performed in this subrouti ne.

More Notes

4. You can revise this routine to update only the X coordinate by inserting two Z80
RET (return) instructions as indicated on page 87 i n this subroutine MVECT listing.
To update only the Y coordinate, CALL 3887H (see pa ge 87).

5. The hi-res vector block and limits table diagram s are shown on the Bally Alley
posting titled as:

Low And High-Res Data Block Comparisons

6. The vector block in screen RAM must be initializ ed for the program application
prior to calling the MVECT subroutine. Depending on the application, it might take
fewer bytes to initialize/copy the vector block fro m ROM to RAM by using a Z80 LDIR
(opcode ED BO) instruction.

7. For general application of vector subroutines an d writing graphic patterns,
consult the following reference guides on the Bally Alley:

MCM Design supporting software documentation relate d to hi-res graphics
Nutting Manual software and system descriptions, pa ge 1–107.
"An In–Depth Look At..." tutorial series, a supplem ent to the NM, by MCM Design.

Reference also The Better Bally Book website

End Of Posting
MCM Design
March 2020

This page intentionally left blank

This page intentionally left blank

CUSTOM HI-RES MULTI-PAGER GRAPHIC PATTERN WRITE SUBROUTINE
For Use On A Modified Hi-Res Astrocade
Utilizing MCM Design's Hi-Res Static Screen RAM Mul ti-pager
Similar To The On-Board Low-Res Subroutines #30 thr u #38
(copied from MCM Design's hi-res Multipage Test Dem o, in the hand written code
listing, pages 96-98)
Margins Left 0.9, Right 1.0

This posting is for a ML/AL programmer who has acce ss to a modified hi-res Astrocade
with MCM Design's multi-pager. Rather than create a n applicable subroutine from
scratch, this tested hi-res subroutine can be used as a reference doc.

SUBROUTINE PROGRAM NOTE
This subroutine was used as a test in MCM Design's Multi-pager Test/Demonstration
Demo to write a critter in each of the 8 pages of s creen RAM while a main program
was being executed in the page 7 scratchpad area. S o, the Z80 stack area pointer
(register SP) was being switched (pointed) to the p age that the critter was written
to. After the critter write, the stack area was the n pointed back to page 7 to continue
execution of the main program. The main program is only 98 bytes, but the program
calls 5 subroutines in cartridge ROM 2000–3FFFH.

Refer to the attached scanned hand written listing with stacked hi-res subroutines
labeled as CVWRIT, CWRITR, CWRITP, CWRIT and CMWRIT .

These stacked subroutines are usable for the magic writing of the specific hi-res
graphic pattern write subroutine labeled as CWRT.

This multi-entry stacked subroutine is called direc tly. There is no user programmer
interface (UPI) required to process the calling of any of these 5 subroutines. Each
of the 5 entry points has a specific purpose. The 5 entries are labeled below.

CVWRIT
CWRITR
CWRITP
CWRIT
CMWRIT

The Z80 CPU register entry requirements are only sp ecified at the beginning of
CVWRIT. This hi-res version was created from the lo w-res version listed in the
Nutting Manual Z80/ROM Cross Assembler listing, pag es 49–51.

So, documentation related to the low-res sub#30 thr u #38 can be used as a guide for
this hi-res version. Refer also to the Nutting Manu al system description and MCM
Design's "An In-Depth Look At..." series, both post ed on the Bally Alley, for info
related to the magic RAM and magic write functions.

General Description Of 5 Entry Points

Entry 1
CVWRIT
Write Relative From Vector Block

This entry uses the X,Y coordinates and the Magic R egister value from a vector block
in screen RAM to write a hi-res graphic pattern.

Refer to the Bally Alley posting: LOW AND HIGH-RES DATA BLOCK COMPARISONS.
This posting diagrams the required hi-res vector bl ock and coordinate system.

+++ ++++++++++++++++++++++++++++

Entry 2
CWRITR
Write Relative

A relative X and Y is added to the entry X,Y coordi nates of a graphic pattern frame
for the writing of animated patterns such as a movi ng arm (Gunfight). Set relative
X and Y = 0 if you are just writing a regular patte rn (not an animated pattern).

+++ ++++++++++++++++++++++++++++

Entry 3
CWRITP
Write With Pattern Size

The pattern's X size and Y size are loaded into the Z80 CPU register BC.

+++ ++++++++++++++++++++++++++++

Entry 4
CWRIT
Write With X,Y Coordinates Conversion

The Z80 CPU registers DE and A entry requirements a re the same as the above CWRITP.
The Z80 register HL must now point at the actual gr aphic pattern and register BC
= YSIZE XSIZE. Note that the Y coordinate must be i n the screen RAM scratchpad address
7FF7H. CWRIT calls subroutine RELTA1 to convert the X,Y coordinates to their
corresponding magic address. For details on the sub routine RELTA1, refer to the Bally
Alley posting:

CONVERT HIGH-RES COORDINATES TO A MAGIC ADDRESS

+++ ++++++++++++++++++++++++++++

Entry 5
CMWRIT
Write Pattern In Hi-Res

This is where only a custom but normal plop pattern write is located. There are no
write routines here to support the magic expand, fl op or rotate functions. See the
above SUBROUTINE PROGRAM NOTE.

End Of Posting
MCM Design
March 2020

This page intentionally left blank

	Part_001-2_Low and Hi-Res Comparisons (2020 03)(MCM Design).pdf
	Low and Hi-Res Comparisons (03 16 2020)(Michael Matte)_01.tif
	Low and Hi-Res Comparisons (03 16 2020)(Michael Matte)_02.tif

	Part_002-2_Convert Coordinates to Magic Address (2020 02)(MCM Design).pdf
	Convert Coordinates to Magic Address (2020 02)(MCM Design)_55.tif
	Process MR Flop Request for Converstion (2020 02)(MCM Design)_69.tif

	Part_003-2_Write Relative from Vector Block (2020 02)(MCM Design).pdf
	Write Relative from Vector Block (2020 02)(MCM Design)_64.tif
	Write Relative from Vector Block (2020 02)(MCM Design)_65.tif
	Write Relative from Vector Block (2020 02)(MCM Design)_66.tif
	Write Relative from Vector Block (2020 02)(MCM Design)_67.tif

	Part_004-2_Update X and Y Coordinates in Vector Block (2020 02)(MCM Design).pdf
	Update X and Y Coords in Vector Block (2020 02)(MCM Design)_84.tif
	Update X and Y Coords in Vector Block (2020 02)(MCM Design)_85.tif
	Update X and Y Coords in Vector Block (2020 02)(MCM Design)_86.tif
	Update X and Y Coords in Vector Block (2020 02)(MCM Design)_87.tif
	Update X and Y Coords in Vector Block (2020 02)(MCM Design)_88.tif
	Update X and Y Coords in Vector Block (2020 02)(MCM Design)_89.tif

	Part_005-2_Custom Multi-Pager Write Routine (2020 02)(MCM Design).pdf
	Custom Multi-Pager Write Routine (2020 02)(MCM Design)_96.tif
	Custom Multi-Pager Write Routine (2020 02)(MCM Design)_97.tif
	Custom Multi-Pager Write Routine (2020 02)(MCM Design)_98.tif

